A Hybrid Generative/Discriminative Approach to Semi-Supervised Classifier Design

نویسندگان

  • Akinori Fujino
  • Naonori Ueda
  • Kazumi Saito
چکیده

Semi-supervised classifier design that simultaneously utilizes both labeled and unlabeled samples is a major research issue in machine learning. Existing semisupervised learning methods belong to either generative or discriminative approaches. This paper focuses on probabilistic semi-supervised classifier design and presents a hybrid approach to take advantage of the generative and discriminative approaches. Our formulation considers a generative model trained on labeled samples and a newly introduced bias correction model. Both models belong to the same model family. The proposed hybrid model is constructed by combining both generative and bias correction models based on the maximum entropy principle. The parameters of the bias correction model are estimated by using training data, and combination weights are estimated so that labeled samples are correctly classified. We use naive Bayes models as the generative models to apply the hybrid approach to text classification problems. In our experimental results on three text data sets, we confirmed that the proposed method significantly outperformed pure generative and discriminative methods when the classification performances of the both methods were comparable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploiting Unlabelled Data for Hybrid Object Classification

We propose a semi-supervised learning algorithm for visual object categorization which utilizes statistical information from unlabelled data to increase classification performance. We build on an earlier hybrid generative-discriminative approach by Holub et al. [6] which extracts Fisher scores from generative models. The hybrid model allows us to combine the modelling power and flexibility of g...

متن کامل

Online Tracking and Reacquisition Using Co-trained Generative and Discriminative Trackers

Visual tracking is a challenging problem, as an object may change its appearance due to viewpoint variations, illumination changes, and occlusion. Also, an object may leave the field of view and then reappear. In order to track and reacquire an unknown object with limited labeling data, we propose to learn these changes online and build a model that describes all seen appearance while tracking....

متن کامل

Exponential Family Hybrid Semi-Supervised Learning

We present an approach to semi-supervised learning based on an exponential family characterization. Our approach generalizes previous work on coupled priors for hybrid generative/discriminative models. Our model is more flexible and natural than previous approaches. Experimental results on several data sets show that our approach also performs better in practice.

متن کامل

Semi-Supervised Learning for Multi-Component Data Classification

This paper presents a method for designing a semisupervised classifier for multi-component data such as web pages consisting of text and link information. The proposed method is based on a hybrid of generative and discriminative approaches to take advantage of both approaches. With our hybrid approach, for each component, we consider an individual generative model trained on labeled samples and...

متن کامل

Semi-Supervised Structured Output Learning Based on a Hybrid Generative and Discriminative Approach

This paper proposes a framework for semi-supervised structured output learning (SOL), specifically for sequence labeling, based on a hybrid generative and discriminative approach. We define the objective function of our hybrid model, which is written in log-linear form, by discriminatively combining discriminative structured predictor(s) with generative model(s) that incorporate unlabeled data....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005